Critical Lessons for Future Installers to Reduce End-Of-Life Costs

Saxon Metzger

Do This, Not That!

• Goals

- Identify the issues that we're facing from our current market and how it's developed.
- Demonstrate the importance of early planning and decision-making to reduce future costs.
- Clarify the key strategies and practices for installers, financiers, product manufacturing firms, and crew looking to improve project performance.
- We need an industry wide incorporation of decommissioning
 - How we're selling and developing new solar
 - How we're investing in solar infrastructure
 - How we're committing to various products and tech

Here's the Reality:

- Solar decommissioning will be discussed at the 10-15 year mark
- Everyone thinks their solar is a gold mine
- Everyone thinks they can easily perform and estimate decom work
- I don't see many solar installers discussing the details of decom. It's a losing sales conversation, but there's a reality
- I've lost numerous bids to theoretical pricing. You have to understand the market to beat quotes that aren't real
- Rooftop systems will need to be removed and replaced eventually
 - For roof repairs or new roofing
 - Begs the question, swap while it's already off the roof?

Understanding End-Of-Life Costs

• Decommissioning steps and estimates is more than just installation in reverse.

- Take New York's example of a 2 mW site.
- At 200-400w per panel, that's 5,000-10,000 panels
- Approximately 1-10 acres per site
- These costs are delusionally inaccurate and highly optimistic. You'll go broke with this
 - This assumes a break even on all components. After 20 years, that's not reality
 - Recycling: \$18 per panel
 - Ballast at \$80/ton concrete
 - Pallets for transportation and removal
 - Trucks to recycling center: Only 500-800 panels per 53' flat bed
 - Seed Disturbed Areas.... \$250?
 - Panel removal at 50 cents per panel for labor?

New York state offers a more detailed set of requirements.

According to New York state's decommissioning guideline handbook, a 2 MWdc solar facility might cost \$98,900 to dismantle. Facilities on third-party-owned land must include a guarantee or security agreement.

Table 1: Sample list of decommissioning tasks and estimated costs

Tasks	Estimated Cost (\$)
Remove Rack Wiring	\$2,459
Remove Panels	\$2,450
Dismantle Racks	\$12,350
Remove Electrical Equipment	\$1,850
Breakup and Remove Concrete Pads or Ballasts	\$1,500
Remove Racks	\$7,800
Remove Cable	\$6,500
Remove Ground Screws and Power Poles	\$13,850
Remove Fence	\$4,950
Grading	\$4,000
Seed Disturbed Areas	\$250
Truck to Recycling Center	\$2,250
Current Total	\$60,200
Total After 20 Years (2.5% inflation rate)	\$98,900

I'm Not Done

• Other Cost Issues

- Far more labor, equipment etc.
 - Concrete
 - A skid and breaker costs more than \$1,500 for concrete
 - Removing electrical equipment
 - Electrician?
 - Dismantling racks
 - Remove rack wiring
 - Removing cable
 - Removing Ground Screws and Power Poles
 - Remove Fencing
 - Grading
- These numbers create downward pressure
 - Don't go broke competing against these prices

New York state offers a more detailed set of requirements.

According to New York state's decommissioning guideline handbook, a 2 MWdc solar facility might cost \$98,900 to dismantle. Facilities on third-party-owned land must include a guarantee or security agreement.

Table 1: Sample list of decommissioning tasks and estimated costs

Tasks	Estimated Cost (\$)
Remove Rack Wiring	\$2,459
Remove Panels	\$2,450
Dismantle Racks	\$12,350
Remove Electrical Equipment	\$1,850
Breakup and Remove Concrete Pads or Ballasts	\$1,500
Remove Racks	\$7,800
Remove Cable	\$6,500
Remove Ground Screws and Power Poles	\$13,850
Remove Fence	\$4,950
Grading	\$4,000
Seed Disturbed Areas	\$250
Truck to Recycling Center	\$2,250
Current Total	\$60,200
Total After 20 Years (2.5% inflation rate)	\$98,900

The Impact of This

- Horrible press for our industry
 - We just became mainstream!
 - Can we survive breaking our promises?
- Unethical for us to abandon the legacy assets that built our solar future.
 This is the same thing that orphaned oil wells have done
- Legal and financial costs
 - Did our workers tell clients wrong information?
 - Will the government step in to solve acres of abandoned solar fields?

Current Challenges: Regulations

- There's local, state, federal, and international rules!
- Research is a huge cost
- Permits: Anecdote

50 STATES OF SOLAR DECOMMISSIONING

Map of Solar Decommissioning Policies in the United States (as of December 2023)

APPENDIX A: DECOMMISSIONING REGULATIONS BY VIRGINIA LOCALITY, AS OF JULY 2022

Legend Commonwealth of Virginia Solar Regulations (July 2022) No decommissioning celhance of FA requiments Locally has a decommissioning celhance Locally has a decommissioning celhance Locally has a decommissioning celhance MF A requi

National Electrical Code Adoption Effective September 2023

Best Practices in Design and Installation: Panels

- Design and Engineering
 - Voltage
 - Sizing
 - Connector type
 - High quality
 - High wattage
 - Selection of materials for ease of recycling or reuse.
 - Incorporating modularity to extend the lifecycle.
- Installation
 - Waterproof seals
 - Correct connectors, proper wiring
 - Be gentle up front
 - Create a decommissioning plan before you install. Encountered an issue or cost? Good!
 - Create solutions while you install for the problems that would be faced at the end.

Best Practices in Design and Installation: Racking

- Designing with disassembly in mind.
 - Warranties?
- Selection of materials for ease of recycling or reuse.
 - This will help your project economics at decommissioning
- Incorporating modularity to extend the lifecycle
 - Can you replace sections?
 - Rewire easily?

Best Practices in Design and Installation: Ballast/Attachments

- Attachment points = roofer cost, less waste
- Ballast = Labor, equipment, and recycling
- Self-ballasting options
- Selection of material for longevity, reuse, and ability to be added and removed regularly

Best Practices in Design and Installation: EBOS

- Aim to minimize risk of structural repairs needed
- Accessible location?
- Properly installed to keep equipment at peak operation?
- How efficient is your EBOS setup?

Do's of Installation to Reduce End-Of-Life Costs

- Prioritize accessibility for maintenance and repair.
- Use standardized parts to facilitate efficient repowering.
- Implement traceability and documentation of materials for future recovery.
 - Personal Anecdote: As-Builts

Don'ts of Installation to Avoid High End-Of-Life Costs

- Avoiding non-recyclable materials and composites.
 - That includes materials that are challenging to remove
 - Gravel
 - Concrete
- Utilizing products that are difficult to disassemble.
- Ignoring the potential for future technology upgrades.

Solutions: Incentives for Reducing End-Of-Life Costs

- Tax incentives and rebates for sustainable practices
- Owning the costs of decommissioning or recycling up front
- Ongoing work on decommissioning to help create value while offering the service
- Enhancing brand value and customer loyalty through sustainability

Technology and Innovation in Product Life Extension

- Advances in materials science for longer-lasting products.
 - Doesn't resolve roofing issues
 - Doesn't resolve structural or ground issues like erosion
- Better O&M solutions
- Improved Repowering Options
- More Modular Solutions

Engaging Stakeholders in the Lifecycle Approach

- Role of consumers in driving demand for sustainable products.
- Partnering with recyclers and waste management firms.
- Collaborating with regulatory bodies for effective standards.

Future Trends and Predictions in End-Of-Life Management

- Better and better recycling, upcycling, reuse, and reduction strategies
 - Cheaper
 - More efficient and sustainable
- More established-industry benefits
 - Affordability
 - Ease of navigation
 - Options
 - Manufacturer improvements

Strategies for Installers

- Develop a full life cycle perspective for new installations
 What is our plan to build, fix, and remove this?
- Training and educate teams on installation and design best practices.
- Building a network of partners for material recovery and recycling.
- Begin working on these projects.
- Find ways to market yourself based on these services.

Challenges and Barriers to Change

- Too few options
 - Inexperienced contractors
 - Locality dependent
 - Material recycling/upcycling solutions haven't all scaled
- Resistance within our industry
 - Who profits from these costs?
 - Who loses from these costs?
- The importance of leadership and culture change in adopting new practices.

Conclusion

- Important takeaways:
 - Early planning
 - Best practices
 - Engaging with stakeholders often
- Future outlook:
 - Role of innovation
 - Regulatory compliance.
- Call to Action: Are we creating positive or negative headwinds for our industry?

Thoughts? Questions?

Table 1: Sample list of decommissioning tasks and estimated costs

Tasks	Estimated Cost (\$)
Remove Rack Wiring	\$2,459
Remove Panels	\$2,450
Dismantle Racks	\$12,350
Remove Electrical Equipment	\$1,850
Breakup and Remove Concrete Pads or Ballasts	\$1,500
Remove Racks	\$7,800
Remove Cable	\$6,500
Remove Ground Screws and Power Poles	\$13,850
Remove Fence	\$4,950
Grading	\$4,000
Seed Disturbed Areas	\$250
Truck to Recycling Center	\$2,250
Current Total	\$60,200
Total After 20 Years (2.5% inflation rate)	\$98,900